Dziś jest Godzina


Odwiedzin: 32149
Dzisiaj: 62
On-line: 1
Strona istnieje: 2014 dni
Ładowanie: 0.8 sek

[ 4475 ]


IV Rewolucja Przemysłowa

"Czwarta rewolucja przemysłowa : uogólniająca koncepcja odnosząca się do pojęcia "rewolucji przemysłowej" w związku ze współczesnym wzajemnym wykorzystywaniem automatyzacji, przetwarzania i wymiany danych oraz technik wytwórczych."  (Wikipedia)








Przemysł 4.0 to strategiczna inicjatywa wprowadzona przez rząd niemiecki na początku 2010 roku w celu przekształcenia produkcji przemysłowej poprzez cyfryzację i wykorzystanie potencjału nowych technologii. Jest to próba zwiększenia produktywności i efektywności głównie w sektorze produkcyjnym. System produkcyjny Przemysłu 4.0 ma być wysoce elastyczny i powinien być w stanie wytwarzać zindywidualizowane i niestandardowe produkty. W rzeczywistości jest to ekscytujące zastosowanie automatyzacji w produkcji, obejmujące wykorzystanie robotyki, zarządzanie danymi, przetwarzanie w chmurze i Internet rzeczy (IoT). Zaczęto pokazywać, że sztuczna inteligencja, robotyka, inteligentne czujniki i zintegrowane systemy są ważną częścią normalnego procesu produkcyjnego. We współpracy z maszynami wymaga integracji poziomej na każdym etapie procesu produkcyjnego. Amerykanie mają tę samą koncepcję dla Przemysłu 4.0, ale wolą nazywać to Smart Factory. Przemysł 4.0 dostarczył wiele emocji i wiele osób z różnych branż decyduje się obecnie na to, jak się zaangażować. Wiele osób uważa, że Przemysł 4.0 to w rzeczywistości przepakowywanie i łączenie różnych kluczowych technologii i technologii, które już istniały. Odświeżono akceptację, dostarczając całościową owijkę, która zapewnia pełną funkcjonalność, która zasadniczo obejmuje zadania związane z gromadzeniem dużych zbiorów danych, przetwarzaniem i analizowaniem danych oraz ulepszaniem procesu dzięki pozytywnym informacjom zwrotnym w celu zwiększenia funkcjonalności i wydajności. W pierwszej rewolucji przemysłowej nastąpiło drastyczne przejście od pracy fizycznej do silnika parowego. Była to epoka, w której wykorzystano mechaniczną przewagę maszyn parowych, aby zmniejszyć zależność od wykorzystania ludzkiej pracy. Po niej nastąpiła druga rewolucja przemysłowa, która wykorzystała moc elektryczności. Silniki parowe zostały wycofane przez wprowadzenie silników elektrycznych i systemów analogowych. W tym okresie wszechobecnie budowano linie montażowe do produkcji masowej. Tymczasem Trzecia Rewolucja Przemysłowa skupiła się na automatyzacji pracy. Komputery i systemy elektroniczne były szeroko stosowane w fabrykach i poza nimi. Czwarta rewolucja przemysłowa, powszechnie nazywana IR 4.0, opiera się głównie na integracji danych, sztucznej inteligencji, maszynach przemysłowych i komunikacji w celu stworzenia wysoce wydajnego, zautomatyzowanego i inteligentnego ekosystemu przemysłowego. Industry 4.0 jest podzbiorem IR4.0, który obejmuje przyszły stan przemysłu charakteryzujący się całkowitą cyfryzacją przepływów produkcyjnych. Przemysł 4.0 obejmuje sześć głównych zasad, tj. interoperacyjność, wirtualizację, decentralizację, możliwości w czasie rzeczywistym, orientację na usługi i modułowość. Interoperacyjność umożliwia systemom cyberfizycznym, ludziom i fabrykom skuteczne łączenie się i komunikowanie się ze sobą za pośrednictwem Internetu Rzeczy i Internetu usług (IoS). Wirtualizacja zapewnia wirtualną kopię fabryki, która powstaje poprzez połączenie danych z czujników z wirtualnymi modelami zakładów i modelami symulacyjnymi. Decentralizacja to zdolność systemów cyberfizycznych z fabrykami do samodzielnego podejmowania optymalnych decyzji. Możliwości w czasie rzeczywistym są niezwykle istotne, ponieważ pomagają zbierać i analizować zebrane dane oraz natychmiast generować spostrzeżenia. Poza tym, aby spełnić zasadę zorientowania na usługi, musi oferować usługi systemów cyber-fizycznych, człowieka i fabryk za pośrednictwem IoS. Dzięki zasadzie modułowości posiada elastyczność w dostosowywaniu inteligentnych fabryk do zmieniających się wymagań poszczególnych modułów. Industry 4.0 to przełomowa koncepcja, która rewolucjonizuje sposób wydajnej produkcji produktów i tworzy nową generację przemysłowych systemów produkcyjnych, które będą całkowicie różne od istniejących. Wdrożenie wszystkich tych możliwości w fabrykach to dopiero początek. Muszą być w stanie bezproblemowo i wzajemnie współpracować w środowisku produkcyjnym, aby można je było zaliczyć do Przemysłu 4.0. Co ważne, Przemysł 4.0 determinuje przyszły stan przemysłu charakteryzujący się cyfryzacją przepływów produkcji i jest ekscytującym przełomem, ponieważ innowacje towarzyszą zrównoważonym procesom. Ponieważ produkcja przemysłowa jest silnie napędzana przez globalną konkurencję i szybko zmieniające się wymagania rynku, ekstremalne postępy w obecnych technologiach produkcyjnych mogą je tylko spełnić. Wprowadzenie Przemysłu 4.0 jest zatem aktualne i ważne dla zapewnienia zrównoważonego rozwoju działalności produkcyjnej. Jest to obiecująca koncepcja oparta na integracji procesów produkcyjnych i biznesowych oraz integracji wszystkich interesariuszy biznesowych w łańcuchu wartości, czyli dostawców i klientów.

IX Filarów Technologii dla Przemysłu 4.0


I. Roboty autonomiczne: Wykonywanie zadań z minimalną ingerencją człowieka lub bez niej

Roboty są powszechnie wykorzystywane do wykonywania powtarzalnych, żmudnych i niebezpiecznych zadań. W ostatnich dniach roboty są w stanie świadczyć coraz szerszy zakres usług, stając się jednocześnie bardziej elastycznymi, współpracującymi i autonomicznymi. Roboty te współdziałają ze sobą i są zaprojektowane w sposób umożliwiający bezpieczną pracę z ludźmi. Stworzony z dwóch oddzielnych słów "współpraca" i "robotyka", Cobotics jest popularnym terminem używanym do opisania robotów pomagających operatorom w wykonywaniu codziennych zadań operacyjnych. Roboty stają się coraz bardziej inteligentne i mogą teraz uczyć się od ludzi, aby wykonywać różne złożone i wymagające zadania. W fabrykach wykorzystywane są autonomiczne roboty, które pełnią różne role. Roboty w pełni autonomiczne są zwykle wykorzystywane do procesów o dużej objętości i powtarzalności, ponieważ dokładność, szybkość i trwałość robota mają znaczne zalety. Wiele hal produkcyjnych używa robotów do pomocy w wykonywaniu bardziej skomplikowanych zadań. Roboty są powszechnie używane do wykonywania zadań, takich jak podnoszenie, przytrzymywanie i przesuwanie ciężkich lub nieporęcznych elementów. Roboty są zaprojektowane tak, aby były bardziej elastyczne, współpracujące i autonomiczne oraz mogą wchodzić ze sobą w interakcje i bezpiecznie współpracować z ludźmi. Przy zachowaniu dobrego bezpieczeństwa, elastyczności i wszechstronności roboty autonomiczne mogą wykonać dane zadanie z dużą precyzją i wydajnością. Wprowadzenie autonomicznych robotów odgrywa kluczową rolę we współczesnym przemyśle wytwórczym. Roboty mogą inteligentnie wykonywać zadania, z uwzględnieniem wszechstronności, bezpieczeństwa i elastyczności. Dzięki najnowszym innowacjom technologicznym produkowane są roboty, które są bardziej autonomiczne, aby wspierać rewolucję przemysłową. Roboty i ludzie pracują ramię w ramię nad łączeniem zadań za pomocą interfejsu człowiek-maszyna. Wdrażanie robotów w produkcji jest powszechne i zachęcające, ponieważ obejmuje różne funkcje, tj. logistykę, produkcję, zarządzanie biurem itp. Od 2004 r. liczba wielozadaniowych robotów przemysłowych opracowanych przez firmy w Europie wzrosła dwukrotnie. Włączenie robotów do automatyzacji w produkcji skłania firmy do utrzymania konkurencyjności na arenie międzynarodowej, ponieważ stanowi to skuteczne rozwiązanie w celu uzupełnienia luki w umiejętnościach w obszarach, w których trudno jest zatrudnić odpowiednio wykwalifikowanych pracowników. Dzięki wdrożeniu robotów autonomicznych pracownicy mogą poświęcić więcej czasu na projektowanie, innowacje, planowanie i strategię, które są równie ważne dla rozwoju i sukcesu. Automatyzacja produkcji za pomocą robotów doprowadzi do większego bezpieczeństwa i satysfakcji pracowników, zwiększonej produktywności i ostatecznie wyższej rentowności. Istnieją uzasadnione przesłanki, aby skłonić właścicieli fabryk do stosowania autonomicznych robotów w swoich podmiotach. Po pierwsze, ponieważ przy wytwarzaniu produktu zaangażowanych jest wiele procesów produkcyjnych, roboty mogą być wykorzystywane do automatyzacji każdego zadania, od obsługi surowców po pakowanie gotowego produktu. Po drugie, roboty nie potrzebują odpoczynku jak ludzie i mogą pracować 24 godziny na dobę, aby wykonywać zadania w sposób ciągły. Po trzecie, nowoczesne roboty są opracowywane w taki sposób, aby były bardzo elastyczne i można je wygodnie dostosowywać do wykonywania różnych funkcji, w tym złożonych. Po czwarte, wykorzystanie robota do automatyzacji w produkcji jest opłacalne i poprawia wyniki finansowe firmy. Wreszcie automatyzacja za pomocą robotów pomoże osiągnąć wysoką prędkość produkcji i szybsze dostarczanie produktów do klientów. Niektóre roboty są zaprojektowane tak, aby były mobilne w wykonywaniu swoich zadań. Planowanie ruchu to trudny aspekt w dziedzinie autonomicznych robotów mobilnych, który pozwala im przemieszczać się z jednej pozycji do drugiej w różnych środowiskach, które mogą obejmować zarówno statyczne, jak i dynamiczne przeszkody. Zaproponowano inteligentne i zoptymalizowane rozwiązanie nawigacyjne z zastosowaniem techniki sztucznej inteligencji, aby zapewnić maksymalne bezpieczeństwo oraz krótszą i lepszą opcję wyznaczania tras. Roboty autonomiczne różnych dostawców, takich jak ABB, Bionic Robotics, Fanuc, Gomtec, Kuka itp., są obecnie szeroko stosowane w różnych zastosowaniach przemysłowych. Różne modele robotów są opracowywane przez różnych kluczowych graczy, aby wspierać trend technologiczny Przemysłu 4.0. Coraz więcej krajów intensyfikuje wysiłki na rzecz zatrudniania robotów przemysłowych w swoim przemyśle wytwórczym. Republika Korei znalazła się na szczycie listy w 2016 r. z 631 robotami przemysłowymi na 10 000 pracowników. Niedawny rozwój robotów autonomicznych był wyjątkowy i zachęcający. W wielu fabrykach autonomiczne roboty są w stanie przenosić surowce, półprodukty i gotowe towary w sposób wydajniejszy, szybszy i inteligentniejszy. Ponieważ roboty działają w oparciu o złożony algorytm logiczny, nie wymagają żadnej z góry ustalonej ścieżki do realizacji swoich zadań. Zastosowanie robotów w rzeczywistości sprawiło, że proces produkcyjny stał się wydajniejszy i bardziej opłacalny.

II. Symulacja: Tworzenie w wirtualnym świecie i przewidywanie wyników działania

Symulację definiuje się jako przybliżoną imitację działania procesu lub systemu. Jest wykorzystywana w wielu funkcjach, takich jak inżynieria bezpieczeństwa, optymalizacja wydajności, szkolenia, testowanie, projektowanie itp. Symulacja odgrywa kluczową rolę w Przemyśle 4.0, ponieważ ta technologia pomaga osiągać lepsze wyniki na wiele sposobów. Zasadniczo zmniejsza niepotrzebne marnotrawstwo czasu i zasobów, jednocześnie zwiększając wydajność produkcji. Ponadto znacznie zwiększa wydajność i przychody firmy produkcyjnej. Poza tym symulacja jest bardzo ważna na etapie projektowania produktu, ponieważ pozwala na należytą ocenę wyników produktu i wprowadzenie niezbędnych zmian, jeśli produkt nie spełnia specyfikacji. Za pomocą kroków symulacyjnych można znacznie poprawić i ustalić jakość podejmowania decyzji. Warto zauważyć, że symulacja 3D rozwoju produktu, rozwoju materiałów i procesów produkcyjnych stała się normalną praktyką w wielu firmach jako niezbędny krok. Wykorzystuje dane w czasie rzeczywistym, aby odzwierciedlić świat fizyczny w wirtualnym modelu ucieleśniającym ludzi, maszyny i produkty. Symulacja umożliwia również operatorom testowanie i optymalizację ustawień maszyny dla następnego produktu w linii w świecie wirtualnym przed rzeczywistą fizyczną rekonfiguracją, dzięki czemu czas przestoju maszyny na konfigurację jest minimalny, przy jednoczesnym zwiększeniu ogólnej jakości. W zakładach produkcyjnych częściej stosuje się narzędzia symulacyjne do odzwierciedlenia świata fizycznego w modelu wirtualnym, głównie w celu skrócenia czasu konfiguracji maszyny i podniesienia ogólnej jakości. Wykorzystanie symulacji procesów produkcyjnych nie tylko skróci czas przestojów, ale także zmniejszy awarie produkcyjne w fazie rozruchu. Symulacja z systemami komputerowymi zapewnia narzędzie do modelowania i oceny do analizy złożonych systemów. Symulacja była wykorzystywana do ulepszania projektowania złożonych systemów już w latach 50. XX wieku. Początkowo przeprowadzono symulacje, aby zweryfikować projekty systemów, aby sprawdzić, czy spełniają one określone z góry cele. Dzięki serii symulacji zasadniczo oszczędzają czas i zasoby, ustanawiając weryfikację koncepcji przed zbudowaniem systemu fizycznego. Symulacje są przydatne do oceny różnych opcji projektów systemów, co następnie pomaga projektantowi wybrać najlepszą wydajność lub najbardziej zoptymalizowany projekt. Ponadto symulacje mogą być wykorzystywane do pomocy projektantom w identyfikacji mocnych i słabych stron konkretnego projektu. Co istotne, model symulacyjny jest w stanie wykorzystać specyficzność w celu zwiększenia wierności modelowanemu systemowi. W związku z tym dane wyjściowe z modelu symulacyjnego mogą oferować wiarygodne prognozy wydajności systemu. Na podstawie wyników symulacji projektant może zdecydować, czy zbudować system fizyczny, czy też nie. Modele symulacyjne są zwykle wymagane do uchwycenia ważnych systemów i operacji z dużą ilością szczegółów. Dlatego modele symulacyjne są zwykle bardzo złożone i obliczeniowo drogie w prowadzeniu. Koszt obliczeń jest jeszcze wyższy, gdy do kontrolowania szumu w symulacjach stochastycznych konieczne są wielokrotne replikacje symulacji. Ponadto należy dostarczyć modelarzom symulacyjnym wystarczającą ilość danych wysokiej jakości, aby mogli oszacować modele rozkładu prawdopodobieństwa dla różnych źródeł niepewności i losowości w systemie. Modele symulacyjne są zwykle używane na etapie projektowania systemu, aby projektanci mieli wystarczająco dużo czasu na zebranie danych i przeprowadzenie symulacji w celu uzyskania statystycznie uzasadnionych wniosków do podjęcia decyzji. Gwałtowny wzrost mocy obliczeniowej w ostatnich latach, w postaci przetwarzania w chmurze i wysokowydajnych klastrów obliczeniowych, zachęcił do podejmowania dalszych decyzji opartych na symulacjach, które wcześniej były ograniczone ze względu na obawy związane z kosztami obliczeniowymi. Optymalizacja symulacji umożliwia projektantowi systemu systematyczne i metodyczne przeszukiwanie dużej przestrzeni decyzyjnej w celu uzyskania optymalnego projektu bez ograniczania się do kilku konkretnych opcji. Ta zdolność optymalizacji znacznie zwiększa możliwości narzędzia do symulacji zakresu dla złożonych projektów. Obecnie jest to aktywny obszar badawczy i istnieje wiele komercyjnych produktów oprogramowania symulacyjnego, które są wyposażone w integrację rozwiązań optymalizacji symulacji. Optymalizacja symulacji jest zasadniczo użytecznym narzędziem do znajdowania optymalnego projektu systemu w oparciu o model symulacji komputerowej. Służy do przewidywania i oceny wydajności złożonych systemów stochastycznych. Ciągłe wysiłki na rzecz optymalizacji symulacji i wykładniczego wzrostu mocy obliczeniowej sprawiły, że korzystanie z symulacji w celu bezpośredniej optymalizacji projektowania i działania systemów stało się bardziej atrakcyjne

III. Pozioma i pionowa integracja systemu: Łączenie, współpraca i współpraca w poziomie i pionie

System można zintegrować poziomo i pionowo. Integracja pozioma może doprowadzić tworzenie sieci między systemami cyberfizycznymi na bezprecedensowy poziom w celu osiągnięcia większej wydajności. Każde urządzenie i system tego samego poziomu produkcji w tym samym zakładzie jest ze sobą połączone. Istnieje również komunikacja danych między systemami w różnych obiektach, umożliwiająca planowanie i rozdzielanie zadań między sobą. Mając to na uwadze, przestój w określonym zakładzie może zostać pokryty lub zrekompensowany przez maszyny z innego zakładu przy niewielkiej interwencji człowieka lub bez niej. Tymczasem integracja pionowa jest stosunkowo trudniejszym przedsięwzięciem. Każdy system na różnych poziomach hierarchii ma dostęp do wszystkich zebranych lub wygenerowanych danych. Obecnie głównym wyzwaniem jest to, że różne protokoły komunikacyjne są używane na różnych poziomach. W związku z tym systemy mają trudności z komunikacją i wymianą danych między sobą. Jeśli jednak integracja pionowa w obiekcie zostanie przeprowadzona prawidłowo, wydajność ulegnie znacznej poprawie. Można to rozwiązać za pomocą odpowiednich i odpowiednich interfejsów. Pełna integracja i automatyzacja procesów produkcyjnych w pionie i poziomie pokazuje automatyzację komunikacji i współpracy, szczególnie w ramach standaryzowanych procesów. W przypadku integracji poziomej stara się realizować połączone sieci systemów cyberfizycznych i korporacyjnych, które osiągają nowy poziom elastyczności, automatyzacji i wydajności operacyjnej w procesach produkcyjnych. Ten rodzaj integracji może mieć miejsce na różnych poziomach. Na poziomie hali produkcyjnej połączone z Internetem maszyny i jednostki produkcyjne stają się obiektem o ściśle określonych właściwościach w ramach sieci produkcyjnej. Nieustannie komunikują swój stan wydajności i autonomicznie reagują na zmieniające się wymagania produkcyjne. Skutkuje to lepszą opłacalnością w produkcji elementów i skrócenie przestojów maszyn dzięki konserwacji predykcyjnej. Integracja pozioma może wystąpić w wielu zakładach produkcyjnych, gdzie dane zakładu produkcyjnego są współdzielone w całym przedsiębiorstwie, co umożliwia wykonywanie zadań produkcyjnych inteligentnie przydzielone do obiektów, aby sprawnie i szybko reagować na zmiany zmiennych produkcyjnych. Ponadto integracja pozioma może mieć miejsce w całym łańcuchu dostaw, gdzie przejrzystość danych i wysoki poziom zautomatyzowanej współpracy w ramach (i) łańcucha dostaw i logistyki, który sam obsługuje procesy produkcyjne, oraz (ii) łańcucha dostaw, który dostarcza gotowe produkty do rynek. Z drugiej strony integracja pionowa pomaga powiązać wszystkie warstwy logiczne w organizacji, takie jak produkcja, badania i rozwój, zapewnienie jakości, technologia informacyjna, sprzedaż i marketing, zasoby ludzkie itp. Ten rodzaj integracji umożliwia swobodny przepływ danych między tymi warstwami, aby ułatwić podejmowanie decyzji taktycznych i strategicznych. Integracja pionowa zasadniczo tworzy przewagę konkurencyjną, ponieważ umożliwia firmie szybką i odpowiednią reakcję na zmieniające się sygnały rynkowe, a także nowe możliwości. Obecnie odkryto, że wiele systemów informatycznych wciąż nie jest w pełni zintegrowanych. Większość firm rzadko jest połączona ze swoimi dostawcami i klientami za pomocą połączenia internetowego. Nawet w ramach własnej firmy dział projektowania technicznego nie jest bezpośrednio połączony z jej halą produkcyjną. Dlatego mamy nadzieję, że wraz z wprowadzeniem Przemysłu 4.0 większość firm produkcyjnych podejmie kroki w celu ścisłego powiązania lub wzajemnego połączenia między działami oraz między dostawcami i klientami. Dzięki uniwersalnym sieciom integracji danych obejmujących wiele firm, które umożliwiają całkowicie zautomatyzowany łańcuch wartości, pozioma i pionowa integracja systemów między firmami, działami, funkcjami i możliwościami będzie bardziej spójna i wydajna.

IV. Przemysłowy Internet Rzeczy: Sprawianie, że przedmioty komunikują się ze sobą i z ludźmi

IoT to ogromna liczba urządzeń, maszyn lub systemów, które są połączone za pośrednictwem sieci lub Internetu w celu udostępniania i manipulacji danymi. To ekosystem, w którym wszystkie czujniki i aktuatory mogą funkcjonować oddzielnie i komunikować się ze sobą. IoT jest również czasami określany jako Internet wszystkiego (IoE), obejmujący IoS, Internet usług produkcyjnych (IoMs), Internet ludzi (IoP) oraz integrację technologii informacyjnych i komunikacyjnych (IICT). Kelvin Ashton, brytyjski pionier technologii, po raz pierwszy zapoczątkował koncepcję IoT w 1999 roku. Jak widać w przemyśle motoryzacyjnym, istnieje komunikacja między różnymi urządzeniami i systemami w samochodzie. Wprowadzenie Connected Car umożliwia komunikację w czasie rzeczywistym, m.in. systemy nawigacyjne w połączeniu z rejestrami pojazdów i ustawianiem połączeń alarmowych w razie wypadku. Przemysłowy IoT (IIoT), po raz pierwszy wspomniany przez General Electric, to solidna wersja IoT, która ma zwiększoną odporność, aby przetrwać w trudnych warunkach branży. Jako podkategoria IoT, IIoT jest ważny, ponieważ wykorzystuje inteligentne czujniki i siłowniki do usprawnienia procesów produkcyjnych. Jest to sieć inteligentnych urządzeń połączonych w kompletny system gromadzący, wymieniający i analizujący dane. Ogólnie rzecz biorąc, system IIoT składa się z (i) inteligentnych urządzeń, które mogą gromadzić, przechowywać i przekazywania danych, (ii) prywatna lub publiczna infrastruktura teleinformatyczna oraz (iii) systemy analizy danych, które generują przydatne informacje biznesowe. Obejmuje również wykorzystanie gromadzenia i analizy danych w różnych branżach, takich jak produkcja, energetyka, rolnictwo, transport, opieka zdrowotna itp. Urządzenia IIoT obejmują szeroki zakres, od małych czujników środowiskowych po złożone przemysłowe roboty autonomiczne. Systemy IIoT zwykle składają się z warstwowej architektury modułowej technologii cyfrowej. Warstwy te to warstwa urządzenia, warstwa sieciowa, warstwa usługowa i warstwa treści. Warstwa urządzenia zwykle składa się z komponentów fizycznych, takich jak czujniki, maszyny, systemy cyberfizyczne (CPS) itp. Tymczasem warstwa sieciowa zwykle składa się z magistral sieciowych, protokołów komunikacyjnych, przetwarzania w chmurze itp. Warstwy usług składają się z oprogramowania lub aplikacje analizujące dane i ostatecznie przekształcić je w przydatne informacje. Na górze znajduje się warstwa treści, która jest urządzeniem obsługującym interfejs użytkownika, takim jak monitor, wyświetlacz, tablet, inteligentne szkło itp. IIoT zmienia zasady gry, zapewniając doskonałą wydajność operacyjną i przedstawia zupełnie nowy model biznesowy, który przynosi korzyści nie tylko pewnej firmy, ale także ogółu społeczeństwa. Obecnie IIoT są wykorzystywane w wielu branżach w celu usprawnienia ich codziennej pracy. Technologia IIoT jest agresywnie wdrażana w sektorze produkcyjnym w celu poprawy wydajności produkcji. Maszyna z obsługą IIoT może mieć inteligentne funkcje monitorowania i przewidywać potencjalne problemy, co skutkuje krótszymi przestojami i lepszą ogólną wydajnością. W sektorze łańcucha dostaw technologia IIoT jest wykorzystywana do obsługi zamówień dostaw, zanim się skończą. Pomaga to utrzymać niezbędne artykuły w magazynie i zmniejsza ilość wytwarzanych odpadów. W linii detalicznej IIoT pomaga w inteligentnym i szybkim podejmowaniu decyzji dla poszczególnych sklepów. Jako strategia biznesowa z wdrożeniem technologii IIoT, panele wyświetlające, które automatycznie odświeżają się zgodnie z zainteresowaniami klientów i ich zdolnością do inteligentnej promocji, mogą pomóc sklepowi w uzyskaniu znaczącej przewagi nad innymi firmami. W opiece zdrowotnej IIoT sprawia, że branża staje się bardziej responsywna, bardziej precyzyjna i bezpieczniejsza. Wprowadza urządzenia, które zdalnie monitorują pacjentów i informują lekarzy o nieprawidłowościach lub nietypowych wzorcach w danych monitorujących stan pacjentów. Technologia IIoT przenika również do sektora zarządzania budynkami, gdzie zastosowanie tej technologii może sprawić, że zadania związane z zarządzaniem budynkami będą bezpieczniejsze i wydajniejsze. Wykorzystywana jest kontrola klimatu oparta na czujnikach, co usunie niedokładne domysły związane z ręczną zmianą klimatu w budynku. Dodatkowo dzięki technologii IIoT, instalacja urządzeń sieciowych do monitorowania wejścia do budynku może zwiększyć bezpieczeństwo i umożliwić szybką reakcję w przypadku potencjalnego zagrożenia. Jednym z głównych wyzwań dla IoT w Industry 4.0 jest brak wspólnych standardów. Posiadanie urządzeń połączonych ze sobą w celu udostępniania danych jest dobre; jednak gdy wszystkie z nich zbierają dane w różnych formatach i mają różne protokoły, integracja ich w całkowicie zautomatyzowaną fabrykę będzie trudna i kosztowna. Duże firmy, takie jak Bosch, Eclipse Foundation i inne, pracują w standardowych architekturach komunikacyjnych i protokołach, takich jak protokół zarządzania wydajnością produkcji (PPMP), transport telemetryczny kolejkowania wiadomości (MQTT) i OPC UA. Dzięki temu podłączone urządzenia, w tym te w hali produkcyjnej, mogą bezproblemowo komunikować się ze sobą. Kolejnym głównym wyzwaniem jest bezpieczeństwo w Internecie. Ponieważ urządzenia są połączone z Internetem, są podatne na ataki i podatne na włamania i nadużycia ze strony hakerów. Eksperci ds. bezpieczeństwa szybko poruszają się, aby rozwiązać problemy związane z cyberbezpieczeństwem w Internecie Rzeczy, łącząc nowe technologie ze standardowym bezpieczeństwem IT

V. Cyberbezpieczeństwo: ochrona systemów i sieci komputerowych

Cyberbezpieczeństwo jest niezwykle istotnym elementem Przemysłu 4.0, ponieważ chroni systemy komputerowe, sieci i dane przed złośliwymi działaniami, takimi jak atak sieciowy, nieautoryzowany dostęp, kradzież danych, zakłócenia, uszkodzenia itp. Staje się ważniejszy niż kiedykolwiek ze względu na rosnącą liczbę podłączonych urządzeń i systemów. Ochrona danych przy zachowaniu wydajności systemów to główny cel cyberbezpieczeństwa. Niepokojący jest fakt, że systemy informatyczne wielu instytucji są codziennie atakowane i włamywane. Niezwykle ważne jest, aby fabryki były świadome swoich potencjalnych słabości i dobrze przygotowane na wszelkie nadchodzące zagrożenia. Bardzo ważne jest posiadanie solidnego cyberbezpieczeństwa, ponieważ zapewnia to, że codzienne prowadzenie działalności produkcyjnej nie zostanie poważnie naruszone, co może kosztować ogromne straty dla firmy. W przypadku Przemysłu 4.0 posiadanie zaawansowanego zarządzania tożsamością i dostępem do maszyn i użytkowników oraz wiarygodnych systemów komunikacyjnych ma ogromne znaczenie, ponieważ problem zagrożeń cyberbezpieczeństwa staje się coraz poważniejszy wraz ze wzrostem łączności i szerszym wykorzystaniem standardowych protokołów komunikacyjnych. Zwiększenie gęstości danych oraz fuzja technologii informacyjnej i operacyjnej niesie ze sobą ogromne wyzwanie dla cyberbezpieczeństwa. W ostatnich latach wiele rządów traktowało cyberbezpieczeństwo jako główny problem krajowy o najwyższym znaczeniu. Ważna jest ochrona informacji biznesowych w postaci cyfrowej przed nieautoryzowanym dostępem, kradzieżą i nadużyciami. Wraz z rosnącymi połączeniami sieciowymi cyberataki stają się coraz bardziej powszechne w miarę kradzieży danych można wykorzystać do uzyskania określonych korzyści w formie finansowej i strategicznej. Cyberataki i zagrożenia internetowe stały się coraz poważniejsze w ciągu ostatniej dekady. Problemy te dotyczą w szczególności bezpośrednio i pośrednio użytkowników systemów IoT. Duże firmy lub przedsiębiorstwa są często narażone na złośliwe ataki, które oprócz innych niedogodności, takich jak awarie systemu, wycieki danych, naruszenia prywatności, uszkodzenie danych, spowolnienie systemów itp., powodują ogromne straty finansowe. Powszechne korzystanie z podłączonych urządzeń i usług stworzył ogromne zapotrzebowanie i zachęcenie do nowych form potężnej obrony cybernetycznej w celu zwalczania problemu cyberataków. W wielu firmach cyberbezpieczeństwo jest identyfikowane jako główny problem technologiczny. Większość dużych firm wzmocniła cyberobronę i możliwości swoich systemów informatycznych w celu zapobiegania atakom. Przydzielono i wydano miliony dolarów na zakup zaawansowanych systemów i opracowanie nowych strategii z inwestycjami w bezpieczeństwo IT, aby zmniejszyć ryzyko cyberzagrożeń. W systemie IoT można go ogólnie podzielić na cztery główne poziomy, tj. warstwę percepcji, warstwę sieciową, warstwę usługową i aplikację. System może być podatny na ataki, a cyberatak może nastąpić na dowolnym poziomie systemu. Aby rozwiązać problemy związane z cyberbezpieczeństwem, różne strony muszą ściśle ze sobą współpracować, aby ograniczyć wpływ do minimum. Interesariusze ci to eksperci ds. bezpieczeństwa IT, producenci, regulatorzy, społeczność normalizacyjna i środowisko akademickie. Aby zapewnić sukces w rozwiązywaniu tych problemów, każdy z nich powinien aktywnie podejmować swoje role. Obejmuje ważne role, takie jak (i) promowanie wielofunkcyjnej wiedzy na temat bezpieczeństwa IT i OT, (ii) wyjaśnianie odpowiedzialności wśród podmiotów Przemysłu 4.0, (iii) wspieranie zachęt ekonomicznych i administracyjnych dla bezpieczeństwa Przemysłu 4.0, (iv) zabezpieczanie zarządzania łańcuchem dostaw procesy, (v) harmonizacja wysiłków na rzecz standardów bezpieczeństwa Przemysłu 4.0, (vi) ustanowienie linii bazowych Przemysłu 4.0 dla interoperacyjności bezpieczeństwa oraz (vii) zastosowanie środków technicznych w celu zapewnienia bezpieczeństwa Przemysłu 4.0. Eksperci ds. bezpieczeństwa IT powinni promować wielofunkcyjną wiedzę z zakresu bezpieczeństwa IT i OT oraz bezpiecznych procesów zarządzania łańcuchem dostaw. Ta grupa ekspertów może pomóc w ustaleniu bazowych standardów Przemysłu 4.0 dla interoperacyjności bezpieczeństwa, oprócz zastosowania środków technicznych w celu zapewnienia bezpieczeństwa Przemysłu 4.0. Duże znaczenie ma również bezpieczna i niezawodna komunikacja w połączeniu z wyrafinowanym zarządzaniem tożsamością i dostępem do maszyn i użytkowników

VI. Cloud Computing: dostęp do informacji z dowolnego miejsca za pomocą Internetu

Przetwarzanie w chmurze odnosi się do zdalnego systemu, w którym można uzyskać zdalny dostęp do informacji z dowolnego miejsca za pośrednictwem Internetu. Dzięki wdrożeniu chmury obliczeniowej system produkcyjny umożliwia dostarczanie różnych usług przez Internet z zasobami obejmującymi narzędzia i aplikacje, takie jak bazy danych, magazyny danych, serwery, sieci, oprogramowanie itp. Zamiast przechowywać dane na własnym, lokalnym urządzeniu magazynującym lub dysk twardy, przetwarzanie w chmurze przechowuje informacje w zdalnej bazie danych. Gdy urządzenie komputerowe ma połączenie z Internetem, może wygodnie uzyskiwać dostęp do danych na zdalnym serwerze i uruchamiać określone oprogramowanie w celu manipulacji lub przetwarzania danych. Aby osiągnąć szybszy czas reakcji, nawet na poziomie poniżej sekundy, organizacja wymaga udostępniania danych między witrynami i firmami, co zapewnia przetwarzanie w chmurze. Zaczęło być popularnym wsparciem zarówno dla użytkowników indywidualnych, jak i firm, ponieważ ma kluczowe zalety w postaci wyższej efektywności kosztowej, lepszego bezpieczeństwa, zwiększonej produktywności, szybszego przetwarzania i najwyższej wydajności. Przetwarzanie w chmurze to ważna technologia, która pomaga ludziom współpracować. Jest to narzędzie do współpracy, które rewolucjonizuje kulturę pracy zarządzania danymi. Firmy lub firmy są obecnie bardziej otwarte na wymianę informacji, zamiast zatrzymywać je dla siebie. Praktyka otwierania przyniesie korzyści firmie jako całości, osiągając lepsze wyniki finansowe. Dzięki przetwarzaniu w chmurze ma praktycznie nieskończone możliwości przechowywania dla użytkowników. Istnieje potrzeba, aby firma udostępniała informacje i umożliwiała podejmowanie działań, gdy więcej informacji jest generowanych i gromadzonych. Będzie to korzystne dla każdego użytkownika, który ma dostęp do systemu komputerowego w celu wykonania swoich zadań, a także dla całej firmy. Generalnie wyróżnia się cztery rodzaje chmur, tj. chmura publiczna, chmura społecznościowa, chmura prywatna i chmura hybrydowa. Ich charakterystykę podsumowano w Tabeli

Rodzaj chmury: Opis

Chmura publiczna: nie działa w ramach IT firmy. Zwykle oferowane przez operatorów usług IT. Otwarte dla każdej osoby, firmy lub ogółu społeczeństwa.
Chmura społecznościowa : dostępna tylko dla tych firm lub instytucji, które dołączyły do odpowiedniej grupy z określonymi wymaganiami. Współdzielone przez kilka organizacji, które mają wspólne obawy (np. bezpieczeństwo, misja, zgodność itp.). Może być zarządzany przez zaangażowane organizacje lub stronę trzecią.
Chmura prywatna : dostępna wyłącznie dla jednej organizacji lub firmy .Zwykle fizycznie zlokalizowana w sieci firmowej . Może być własnością firmy, strony trzeciej lub ich kombinacji, być zarządzanymi i zarządzanymi przez tę firmę .
Chmura hybrydowa : połączenie co najmniej dwóch odrębnych infrastruktur chmury (publicznej, społecznościowej lub prywatnej) . Połączone przez ustandaryzowane lub zastrzeżone - dla przenośności danych i aplikacji

Przetwarzanie w chmurze zasadniczo ułatwia wymianę danych w czasie rzeczywistym, tworząc i promując sferę cyfrowej integracji i współpracy. Firma lub firma, która korzysta z usług przetwarzania w chmurze, będzie lepiej łączyć się z kluczowymi interesariuszami, umożliwiając proaktywne zarządzanie łańcuchem dostaw, zapewniając widoczność w czasie rzeczywistym, osiągając najwyższą wydajność i poprawiając zarządzanie ryzykiem.

VII. Produkcja przyrostowa: tworzenie obiektów 3D poprzez dodawanie materiału warstwa po warstwie

Wytwarzanie przyrostowe jest powszechnie znane jako proces łączenia materiałów w celu utworzenia fizycznego obiektu, w odniesieniu do zestawu danych modelu 3D, zwykle warstwa po warstwie. Technologia ta jest powszechnie stosowana do wytwarzania małych partii niestandardowych produktów, które oferują zalety konstrukcyjne, tj. złożone, ale lekkie konstrukcje. Tymczasem jest to w przeciwieństwie do wytwarzania subtraktywnego, które jest konwencjonalnym procesem, w którym fizyczny obiekt 3D jest tworzony poprzez sukcesywne usuwanie materiału z litego bloku materiału. Wytwarzanie subtraktywne jest zwykle wykonywane przez ręczne cięcie materiału lub mechanicznie za pomocą komputerowej maszyny sterowanej numerycznie (CNC). Fizyczna część wdrożenia Przemysłu 4.0 jest ograniczona funkcjami i możliwościami obecnych systemów produkcyjnych, co sprawia, że wytwarzanie addytywne jest bardzo ważnym elementem Przemysłu 4.0. Wyzwania polegające na rosnącej indywidualizacji produktów i skróceniu czasu wprowadzania na rynek są poważnie napotykane przez wiele firm, aby zaspokoić potrzeby klientów. Wymagane jest ponowne opracowanie nietradycyjnych metod produkcji, aby osiągnąć możliwość masowej personalizacji w Przemyśle 4.0. Wytwarzanie przyrostowe stało się kluczową technologią tworzenia produktów dostosowanych do indywidualnych potrzeb ze względu na możliwość wytwarzania elementów o zaawansowanych właściwościach pod względem kształtu, materiału itp. Produkcja stała się szybsza i bardziej opłacalna dzięki wdrożeniu technologii wytwarzania przyrostowego, takich jak selektywne topienie laserowe (SLM), metoda stapiania (FDM), selektywne spiekanie laserowe (SLS) itp. Ponieważ jakość produktów wytwarzanych przy użyciu technologii wytwarzania przyrostowego znacznie się poprawiła w ostatnich latach, są one obecnie stosowane w różnych gałęziach przemysłu, m.in. produkcja, budownictwo, biomedycyna, lotnictwo i wiele innych. Pomimo pojawiających się wątpliwości co do możliwości jej zastosowania w produkcji masowej, wdrażanie wytwarzania addytywnego w różnych branżach szybko rośnie ze względu na postęp technologiczny. Jako zaawansowana technologia wytwarzania dokładnych i złożonych produktów, wytwarzanie przyrostowe jest na dobrej drodze, by zastąpić konwencjonalne techniki produkcyjne

VIII. Rozszerzona Rzeczywistość: Interaktywne wykonywanie zadań w środowisku rzeczywistym za pomocą wirtualnych obiektów

Rzeczywistość rozszerzona odnosi się do technologii cyfrowej, w której użytkownicy mają interaktywne doświadczenie w środowisku świata rzeczywistego z wirtualnymi obiektami wzbogaconymi o informacje percepcyjne generowane komputerowo. Narzędzia do rzeczywistości rozszerzonej są w większości w powijakach, ale już zaczęły tworzyć nowe fale usług. Wcześniej rozszerzona rzeczywistość znalazła zastosowanie tylko w niektórych ważnych lub niebezpiecznych zadaniach, takich jak symulatory lotu. Ostatnio przeniknął do obszarów napraw i konserwacji. Zdalne instrukcje naprawy mogą być dostarczone do dowolnej części świata, o ile istnieje połączenie z Internetem. Dzięki tej technologii technicy mogą zdobywać swoje umiejętności, powtarzając czynności konserwacyjne, aż będą wystarczająco kompetentni. Rzeczywistość rozszerzona została wprowadzona do wielu zastosowań w branży. Jest on obecnie wykorzystywany we współpracy człowieka z robotem (HRC), która jest dziedziną, w której próbuje się zrozumieć, w jaki sposób usprawnić współpracę między człowiekiem a robotem za pomocą innowacyjnych interfejsów. W rzeczywistości stworzenie godnego zaufania i bezpiecznego systemu człowiek-robot jest niewątpliwie bardzo trudnym zadaniem. Rzeczywistość rozszerzona służy do pokazywania informacji kontekstualizowanych w rzeczywistym środowisku, pomagając operatorom w uzyskaniu lepszej świadomości ruchów i sił wywieranych przez robota. Poza tym rozszerzona rzeczywistość jest wykorzystywana do prac konserwacyjnych, naprawczych i montażowych. Wykorzystanie rzeczywistości rozszerzonej do tych zadań może pomóc w obniżeniu ogólnych kosztów. Jednak implementacja rzeczywistości rozszerzonej do tych zadań może być skomplikowana, np. technicy mogą potrzebować odwołać się do instrukcji obsługi, aby zakończyć procedurę. Ciągłe przełączanie uwagi między systemem a instrukcją może nałożyć na techników dodatkowe obciążenie poznawcze. Aplikacje rzeczywistości rozszerzonej do konserwacji i naprawy składają się z zestawu wirtualnych zasobów, które zapewniają pomoc, wskazówki lub sugestie dla techników. Te wirtualne zasoby obejmują animowany model 3D opisujący zadanie do wykonania, ścieżkę dźwiękową z instrukcjami, etykietę tekstową wyjaśniającą kroki itp. Dzięki nałożeniu zasobów graficznych i wyrównaniu z maszyną, która ma być naprawiona lub konserwowana, technologia ta pozwala technikom na właściwe prowadzenie do wykonywać pewne zadania, które mogą mieć niebezpieczny charakter. Mimo swojej użyteczności stoi przed wyzwaniem wdrożeniowym, tzn. tworzenie, zmiana i ulepszanie procedur rozszerzonej rzeczywistości może zająć dużo czasu. Kolejnym wielkim wyzwaniem, z jakim się zmagamy, jest brak przejrzystego i dostępnego przepływu pracy do projektowania i tworzenia aplikacji rzeczywistości rozszerzonej dla branży. Systemy z implementacją z rozszerzoną rzeczywistością obsługują również wiele innych usług, m.in. wybór części w magazynie i wysyłanie instrukcji naprawy za pomocą urządzeń mobilnych. Rzeczywistość rozszerzona może być wykorzystywana do dostarczania pracownikom informacji w czasie rzeczywistym, aby pomóc w podejmowaniu decyzji i procedurach pracy. Podczas gdy pracownicy sprawdzają rzeczywisty system wzywający do naprawy, mogą otrzymać instrukcje naprawy dotyczące sposobu wykonywania pracy. Rzeczywistość rozszerzona jest również wykorzystywana do kontroli jakości produktów. Ponieważ różnorodność produktów w przemyśle szybko rośnie, zadanie kontroli staje się coraz bardziej złożone. Proces sprawdzania może stać się mniej skuteczny ze względu na ograniczenia poznawcze pracowników. Wdrożenie rzeczywistości rozszerzonej może pomóc w usprawnieniu procesu kontroli, ponieważ umożliwia bezpośrednie porównanie między produktem rzeczywistym a idealnym. Nosząc dedykowane urządzenie AR, pracownik może skutecznie skontrolować wytworzony produkt, wizualizując nałożoną na niego reprezentację 3D idealnego produktu. Rzeczywistość rozszerzona jest rzeczywiście bardzo potężnym komponentem Przemysłu 4.0. Stworzyła halę produkcyjną, w której nie tylko wszystko jest połączone, ale także widoczne i interaktywne. Skuteczność rzeczywistości rozszerzonej zależy od samego procesu wizualizacji, ale od sposobu wizualizacji danych. Jego zdolność do ulepszania rzeczywistej przestrzeni została szeroko udowodniona w wielu zastosowaniach. Może zasadniczo pomóc fabryce znacznie poprawić wydajność produkcji. Ponadto rozszerzona rzeczywistość zwiększa również niezawodność i bezpieczeństwo systemów robotycznych. Powoduje to również redukcję kosztów i poprawę wydajności systemów utrzymania ruchu. Rzeczywistość rozszerzona to zdecydowanie jedna z kluczowych technologii Przemysłu 4.0, która wzbogaca role menedżerów i pracowników.

IX. Big Data i analiza danych: analizowanie i wydobywanie przydatnych informacji z dużych zbiorów danych

Analityka big data jest powszechnie określana jako powszechny proces badania ogromnych i zróżnicowanych zbiorów danych w celu wydobycia kluczowych informacji (np. ukrytych wzorców, korelacji, nieregularności, trendów i preferencji), zwykle do podejmowania decyzji. Jest to systematyczny sposób odkrywania ważnych informacji lub wskazówek, czego nie można łatwo wykonać przy użyciu tradycyjnych metod przetwarzania danych. Analityka danych, niegdyś bardzo popularna wśród aplikacji informatycznych, obecnie przenika do łańcucha dostaw i przemysłu wytwórczego. Potęga Big Data i analizy danych może pomóc branży produkcyjnej w zmniejszeniu marnotrawstwa i skróceniu przestojów. W niektórych fabrykach dane są gromadzone na różnych poziomach procesów produkcyjnych. Gdy produkt z fabryk zostanie zidentyfikowany jako wadliwy, można uzyskać dostęp do jego danych produkcyjnych, przetworzyć je i przeanalizować w celu uzyskania określonego wzorca. Etap lub etapy procesu produkcyjnego, które powodują powstawanie wzoru, można przeprojektować lub skorygować, aby naprawić wadliwy problem. Konserwacja predykcyjna służy do oszacowania, kiedy należy przeprowadzić rutynową konserwację i może być oparta na zebranych danych produkcyjnych. Jest uważany za bardziej opłacalny i bezpieczniejszy niż tradycyjna praktyka konserwacji. Analityka Big Data jest często uważana za jedną z kluczowych części Przemysłu 4.0. Analityka przemysłowa big data w rzeczywistości przyciągnęła zainteresowanie zarówno naukowców, jak i środowisk akademickich zarówno w zakresie badań, jak i zastosowań. Efektywne wykorzystanie tej technologii zapewni nową falę wzrostu produkcji i ostatecznie przekształci gospodarki. Aby przedsiębiorstwa osiągały efektywność operacyjną w sposób efektywny kosztowo, muszą być spełnione wymagania przemysłowego big data. Przemysłowa analiza big data obejmuje przechowywanie danych w chmurze, system zarządzania danymi operacyjnymi oraz hybrydową platformę usługową. Przemysłowe analizy big data są również wykorzystywane do konserwacji produkcji i innowacji w zakresie usług, koncentrując się na automatycznym przetwarzaniu danych, ocenie stanu zdrowia i prognozowaniu. Zebrane dane są analizowane w celu identyfikacji problemów występujących w różnych procesach produkcyjnych oraz przewidywania nawrotów podczas eksploatacji. Zbieranie i analiza danych z różnych źródeł systemów produkcyjnych stało się normą wspierającą podejmowanie decyzji w czasie rzeczywistym. Wraz z przyspieszonym wdrażaniem Internetu Rzeczy i różnych czujników do gromadzenia danych, ilość i prędkość danych rosną w sposób wykładniczy, zwłaszcza w sektorze produkcji przemysłowej. Sektor produkcyjny musi korzystać z najnowocześniejszych technologii, aby wydobywać i analizować przydatne informacje z dużych zbiorów danych, co prowadzi do rozpowszechnienia analityki dużych zbiorów danych. Oczywiste korzyści lub zwrot z inwestycji, którymi cieszą się producenci, to najwyższa jakość produktu, wyższa wydajność operacyjna, większa elastyczność i zoptymalizowana efektywność kosztowa